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SUMMARY

This is a study of feedback control for the stabilization of a peri-
pheral Jjet ground effect machine (GEM). The study is limited to over land
operation, to hovering and low forward velocities, where normal aerodynamic
control surfaces are ineffective.

Expressions for the frequency and damping of the heave motion and for
the attitude moment derivative are derived, using the principle of momentum
balance. The influence of physical parameters and scaling on these results
is discussed. The differential equations of forward flight are developed
and expressed.

The results of a series of experiments on an eight foot diameter GEM
model in a hover condition are in satisfactory agreement with theoretical
predictions. The experiments also show considerable damping of the attitude
motion.

An attitude and rate feedback control system was devised, considering
the adaptability of the human pilot, and the disturbing moments. Pre-
liminary synthesis brings out the significance of the moment control lag
and the variation of the moment control effectiveness. It is suggested
that open loop gain adjustments can be expected to provide satisfactory

compensation for parameter changes, both in hovering and in forward flight.




1 . INTRODUCTION
1.1. Background

Most low speed flying vehicles are either unstable or exhibit only
marginal stability. Two outstanding examples of vehicles with stability
problems are ground effect machines (GEMs) and vertical take off and land-
ing aircraft (VTOIS). Although it is a well-known fact that aircraft need
not be actually stable (i.e. return to equilibrium after any disturbance),
for satisfactory flying qualities it is necessary that any divergence in
the motion following a disturbance be sufficiently slow so that it can be
comfortably handled by the pilot. Many GEM and VTOL configurations are suf-
ficiently unstable, over at least a portion of the flight regime, as to be
difficult if not impossible to fly. Aerodynamic stabilization in many
cases proves to be inefficient. Another means for increasing the stability
is the application of feedback control. Some difficulty may, however, be
encountered in the application of conventional techniques to automatic stabi-
lization because of the rapid variation of the stability derivatives during
changes in flight condition.

The report which follows is confined to the problems of artificial sta-
bility augmentation of peripheral jet ground effect machines. An investigation
of the literature shows that very little 1s known about the dynamic character-
istics of this type of vehicle.

Attitude stability can be obtained in the GEM by aerodynamic means. If
the GEM is operated at a height above the ground sufficiently small compared
to the diameter of the machine, it is inherently stable in attitude. However,
the operating height required for stability is generally incompatible with

the height needed for operation over typical terrain. The range of stability




can be extended by using interior Jjets which effectively "compartment"

the machine. Since the individual compartments tend to exhibit altitude
stability, the machine becomes stable in pitch. However, as shown for
example in Reference 5, considerable performance loss results from the use
of internal stabilizing jets. For this reason,lit was thought worthwhile
to investigate feedback as a means of achieving the desired degree of sta-
bility with no significant loss of performance.

The dynamics aspect of ground effect machines has been considered pre-
viously in References 1, 2, 3 and 4, although not primarily from the point
of view of feedback stabilization. Reference 1 was only of a very prelimi-
nary nature although feedback control was considered. The final results of
the study proposed in Reference 2 were not available to the authors at the
time of publication of this report. Reference 3 considered only machines
which had been previously stabilized by means of internal jets, while Refer-
ence 4 considered only the heave motion.

During the short period of time since widespread attention was first
given to the GEMs, a large amount of work has been done. However, a number
of problems still remain. This is particularly true with regard to restor-
ing moments and damping forces and moments, since most of the attention to
date has been confined to predicting, and experimentally determining, the
performance characteristics.

A short review in three sections is given here of the work which has
been done.

1. Augmentation. A study of the general proximity effect on nozzles
was made by Von Glahn in April 1957. (Reference 6). Shortly thereafter a

theory was presented by Chaplin (Reference 7) which assumed the jets to be
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thin and neglected the effects of viscosity. The theory was extended to
thick, viscous jets in References 8 to 12. A qualitative discussion of the
effects of vértices was given by Nixon and Sweeney (Reference 13). A large
amount of experimental data, as well as results of experience with full
scale machines, was given in the papers presented at the Princeton Symposium
(Reference 14). The effects of vortices were treated theoretically in
References 15 and 16.

2. Moments. A theory for the prediction of moments employing thin
jets was given in Reference 17, and was extended to thick jets in Reference 18,
Several experimental investigations of the static moments acting on GEMs were
reported in Reference 5.

3. Forward Flight. Experimental investigations of GEMs in forward
flight were given in References 19 and 20.

Available theoretical and experimental data seem to be sufficient to
allow prediction of the augmentation of a hovering machine with good accuracy.
The situation with regard to moments, however, is not as good. The theory in
Reference 17 shows the machine to be unstable in attitude for all height to
diameter ratios. The theory of Reference 18 gives results similar to those
observed experimentally. However, these results are tied to certain as-
sumptions and the sensitivity to these assumptions has not been explored.

In summary, actually very little information about stability derivatives
is available in the literature. Since a fairly good understanding of the
vehicle to be controlled is a necessity for a feedback control synthesis, a
large part of our effort has been devoted to deriving expressions for some
important stability derivatives. The validity of the theoretical results has
been checked by measurements, and the results are used in a preliminary syn-

thesis of a feedback control system for stability augmentation.
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1.2. Equations of motion

If we attempted a general solution to the problem of describing the
dynamics of the ground effect machine, a system of six céupled nonlinear
differential equations for the six degrees of freedom would have to be
solved. However, in order to concentrate on the dynamic problems which
are most important from a practical engineering viewpoint, we are going
to make simplifications while emphasizing those aspects which lead to a
reasonable formulation of the control problem. Some of the factors which
are neglected at this time may draw more attention at a later stage of
development after the most important controllability problems have been
solved.

The first in a series of simplifications is the assumption that the
longitudinal and the lateral degrees of freedom can be éénsidered un-
coupled. The most obvious coupling terms are gyroscopic moments. A dis-
cussion of the order of magnitude and the scaling of the gyroscopic coupl-
ing is presented in Appendix A. The conclusion is that, except for single
propeller ground effect machines with large specific loads, the gyroscopic
coupling is practically negligible; therefore it will be neglected in the
present study. Nevertheless, it should be mentioned here that the scaling
of the gyroscopic coupling should be considered if the dynamics ﬁf a single
propeller ground effect machine are to be investigated on a scaled model.

There is also a coupling of an aerodynamic nature between the rolling
and pitching motion, due to the fact that both are coupled to the heaving
motion in a similar way. It is well known that the 1lift does not remain
the same when the GEM is not parallel to the ground; the lift is an even

function of the attitude angle around any axis. On the other hand, the aero-
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dynamic moment at any attitude angle is also a function of height. The
mechanism of the coupling can be described in a qualitative way as follows.
Assume that the machine is at a certain roll and pitch attitude angle at the
same time and that the roll angle 1s changed. This causes a change in the
1lift force, therefore, the c.g. of the machine moves up or down. The change
in height induces a change in Ege moment around the pitch axis resulting in
a pitching motion. Similarly, a change in pitch angle results in a rolling
motion.

The strength of this coupling depends mainly upon the slopes of the functions
expressing the relationship between height and angle, and moment and height. The
effect of this coupling on the dynamics is strongly influenced by the damping
in heave.

The even function L = _? (©) where © could be the angle around any axis,
has a flat maximum at © = 0. The change in 1lift with small deviations from the
leveled condition has been shown experimentally to be very small. (See reference 5
and Figure 3). Experiments and theory (to be presented in subsequent sections) in-
dicate a fairly high degree of damping in the heave motion. Considering also that
at practical heights only small angles are possible, this coupling between the
lateral and longitudinal degrees of freedom can be regarded as of secondary im-
portance and is neglected in the subsequent analysis.

Other coupling terms may appear due to an added fin, tail or auwxiliary
thrust. ©Such couplings are not considered here becanse we are concerned pri-
marily with low translational velocities where the ground cushion exists and
where the aerodynamic forces exerted on a fin or tail are not very strong.

It should be pointéd out here that the effect of these additional terms on

the lateral-longitudinal coupling can be, and should be, considered carefully
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in the case of any particular design. We intend to concentrate on the dominant
stability problem of the peripheral jet ground effect machine at and near
hovering.

The above discussion, as well as experience with existing full scale GEM
models, indicate that most problems of stability and controllability appear
even if only three degrees of freedom are considered: the freedom in heave,
in attitude around one axis, and in motion along the axis perpendicular to
the attitude axis. The remainder of this study represents an approach to the
analysis of the stability problems for the purpose of a preliminary synthesis
of an automatic feedback system for stability augmentation.

In order to make the mathematical treatment of our problem feasible, we
will use small perturbation theory. This approach enables us to investigate
the necessary, but not sufficient, condition for stability of a nonlinear
system; the system must be stable in the vicinity of any equilibrium point.
This investigation reveals approximate quantitative information about the
most important stability problems. The variation of the stability through-
out the considered flight regimes will be visualized by means of root locus -
diagrams so that basic Solutions to the feedback control problem can be
suggested.

Stability in hovering will first be considered, followed by a discussion

of stability in forward flight.
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2. HOVERING ANALYSIS

2.1. Hovering equations

As an approximatio.n to the stability problem in hovering, we assume that
variations in attitude are sufficiently small so that any lateral or longitudinal
velocities which develop are quite small, and therefore forces and moments due to
horizontal velocities can be neglected. This leaves us with two coupled equations
in two degrees of freedom. Using the height, h , and attitude angle with respect
to horizontal, © as perturbation variables, we can write the equations in linear-
ized form, Laplace transformed with zero initial conditions.

For heave:

_
(- %~ % s eMT)ne Fge- 35 5 )

and for pitch:

oM oM . oM 2 = oM 2
Wh*(g'\'g&S‘fIS)e asese ()

ST and Se represent the throttle and the moment control input
respectively.
For stability investigations only the homogeneous equations need to be
considered. After dividing by the weight, W , we can write the heave equation

in the following form.

| Q2 - ;SN W -1 WY -1 W (3)
(F5+ w v s~ «® AR

wvhere P = L/g

1k




The moment equation can be normalized by dividing by LD where D can be
any suitable dimension of the GEM

(%)

I 2 aCM aCM bCM = O
(Hs*+ FF s+ FF)er S h

In effect, this procedure serves to define the moment coefficients.
Let us consider now a special but practically very important case,
For equilibrium at the leveled condition bP,_/ D68 = 0 since PL_ is

a smooth even function of © . Also, (OM/ oh = 0 since, because

)9= (=]
of symmetry, tﬁe moment at © = 0 is zero independent of the height. There-
fore, in hovering with zero attitude angle, and practically also at small
attitude angles, we have two uncoupled second order equations of motion for
the two degrees of freedom in heave and attitude. This enables us to investi-
gate the stabilities of the uncoupled modes as functions of height and this
simplified approach will lead to basic suggestions for the solution of the
stability problem in hovering. The effect of dynamic coupling and forward

flight, will be discussed subsequently.

2.2. Application of momentum balance to GEMs.

2.2.1. Assumptions. In this section the momentum balance approach is
used to derive the most important stability derivatives in hovering. The
vortices which occur because of viscous effects are, to a certain extent, in-
cluded in the analysis by lumping the averaged pressure drop under the base
into a "base efficiency factor", n\_ . The momentum balance approach seems
to be adequate to show some of the most important mechanisms influencing the
stability. The relationships to be obtained are also very useful in estimating

the effects of scaling on the stability derivatives.
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The momentum balance approach has been used previously by numerous authors.
The method given here differs from previous presentations in that basic relation-
ships are derived using only the momentum balance approach. Actual numerical
results may differ considerably depending upon the assumptions which are made
about the jet. In the following presentation different assumptions about the
Jet may be taken into account by making appropriate substitutions.

Some fairly general relationships concerning the base pressure and the air
flow at the periphery of the base can be deduced from the assumption that the
pressure difference at the periphery is kept in balance by the sum of Jjet moments.
Following Tulin (Reference 25) we distinguish three different regimes. We shall
characterize these regimes for unit length of the periphery, without specifying
any method of determining the jet momentum. We shall assume that the radius of
curvature of the periphery is large compared to the height of the machine above
the ground, i.e., we assume the flow at each point of the periphery to be two-
dimensional. (Three-dimensional correction will be made later.) We shall also
assume the flow to be incompressible and inviscid. However, viscous losses will
be considered in the form of efficiency factors.

2.2.2. Balanced regime. In the balanced regime the jet from the peripheral

nozzle seals off the base area. At the peripheral element under consideration,

air is neither entering nor leaving the base area.
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For horizontal equilibrium over a segment of the periphery of unit length,

(5)
Peo h= N3 (Tpo mn B+ Tu)™ n:rjb(”‘/‘*"/%)

where h = the height of the nozzle section above ground
Jp = momentum of the jet leaving the nozzle
Ju: = final momentum of the Jjet
Ny = a jet efficiency factor

If the base of the machine is parallel to the ground, then f= f,
where (85 is the jet inclination angle of the machine.
Equation 5 can be normalized by dividing by the Jjet strength out of

ground effect. Using Bernoulli's equation

:roo = F't \ﬂ:'== at Py (6)

Dividing (5) by (6) we get

(1)
= T R (3 e 3R

Using a bar to designate normalized quantities this can be written as:,.

(8)
‘é Pab b = h;(jb P““ﬁ"’ jb\)g Tb(‘"‘/"""‘[3>

where the length is normalized by the nozzle width and the difference be-

tween the initial and final jet momentum has been neglected.

17




2.2,3. Underfed regime. In the underfed regime air is flowing out

of the base area and the momentum of the escaping air must be considered.

\

h ol

T g =
TN 7 77 7 7 7 7 7

Using the subscript W for the underfed regime we can write for the

horizontal equilibrium

—é— ?Bu_—\n. = hT (i-u_ Mﬁ + -—Su._| + iu.?.) (9)

C (P YT\,._ (\-V/\Wﬂ)-t-i.u.'z_j

Here ?fkgl is actually a notation for the normalized change of momentum
rather than for the jet momentum.

For a leveled machine sagain 6= (30 ; if the base is at an angle ©
to the horizontal, R = Po—- O . The mass flow of the escaping air
must be determined from an additional equilibrium condition for the entire
base area.

2.2.4. oOverfed regime. In the overfed regime air is flowing into the

base area. This air must be supplied by part of the nozzle Jet. This
weakens the total jet momentum due to diminishing of the mass flow which
is turned away from the base area and due to the momentum of the air flow-

ing into the base area.

18




For horizontal equilibrium

L —PBO_\‘ = nT (30 prn B Ry 3-0| - ioz) (20)

A
where again R = Bo— © . The mass flow of the air flowing into the
base area must again be determined by means of an additional equilibrium
condition for the base area.

Using the basic concept of these three regimes, equations for forces

and moments can be determined in a form still independent of the particular

choice of jet theory, but nevertheless indicating the basic relationships
and important factors. It should be noted that the basic concept can be
used alsc for other than simple peripheral jets.

2.3. Lift and augmentation.

The over-all lifting force acting on a ground effect machine with a

single peripheral Jet can be expressed in the following general form:

(11)

L=N3f, Toesp do+n | Ryds
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where J is the jet momentum per unit length of the periphery, ,Q. is the
length of the periphery and S is the base area enclosed by the Jjet. In
a leveled, balanced condition the height of the jet is uniform along the
periphery and B-‘-“ Bo ;3 the base pressure is considered uniform over
the whole base area. Yl._ is an efficiency coefficient expressing the ex-
perimental fact that due to vortices and other losses only part of the
computed pressure contributes to the 1lift. For the leveled balanced

condition

L= nT jbze. Ooo.ﬁ)o-rﬂ\_SPB (12)

Generally both ]-b and Ps are functions of the height ,\q . We

introduce now the specific load P\_= L/S

PL(\“>= n;y -Sb (h) ‘%‘ Ct Ro + N PB (h> (13)

For determining the augmentation factor the reference is the specific
1ift produced by the same total head out of ground effect with 60"—‘ O
and the same Jjet efficiency factor, n:r . Out of ground effect PB= o

and with Equation 6 the augmentation can be expressed as

_ Pl S (1)
AO‘) anyg _P;l Lt ©

- b (h> [t S Pe(\n)
R ceslich 2Ny 'R (S
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or

A= —— p = Tioeef.+ P (15)
b a B
- At : . . .
where Ou = -§- is the important physical parameter expressing the

ratio of the nozzle area and the base area, and the bars indicate the

jet momentum and the base pressure normalized by aP—r t and P—r

respectively.

We can alsc express the "normalized specific locad" as:

—

= — 6
P= afNya Jg e Bo+ N Pe 2L

2.4. Heaving dynamics.

2.4.1. Restoring force in heave.

The equilibrium height, he ,is
determined by the condition that the 1ift at this height in the leveled

balanced condition be equal to the weight W .

(17)
Ple= '\J—S\/ = N3 Jy (he) ‘% cat Bo+ N Py (he_>

A deviation from the equilibrium height gives rise to a restoring force

because L # W if W# e -

If we linearize for small deviations we can write

AP = 4R

(18)
d h
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The total derivative is used from here on since we are considering freedom
in height only.
The specific restoring force,which is in effect the normalized "spring-

constant" in heave,is defined as

_ . JdR @
S W\mm &2
- - dJb L d B
B X_ﬂ: dhn S L < B ]\'\:he

The derivation below is based on the following physical considerations.

1. Among the related variables \'\ 9 PB 9 Ib there is only one
independent variable.
2. With our assumptions the jet is determined uniquely by the normal-

ized base pressure, PB , therefore

dJb_ 4T &Ps : (20)

d Pa
ah

Equation 5 by differentiating and substituting the above expression (20).

The change in hase pressure with height, , can be determined from

(21)

|0

A h T T (i)




Substituting Equation 20 and the above expression into Equation 19, we get

+nT d Jo L
DR A O+ .
|- 3 436

and normalizing by Jleo = at P—r with o= tR/¢
— 22
K= ng F e m_ °
SR
Fe Cb
= Mo 5 <,

This equation also serves as a definition for Cg and Cw

The fraction in which & Jo appears both in the numerator and in
ps
the denominator indicates the influence of the change of jet

momentum with base pressure. If the jet would not change with the base

pressure, PB ; the spring constant would be simply,

(23)

P
K= N -




The correction term in the denominator expresses the fact that this full K
cannot develop. For example, downward motion from equilibrium results in
some weakening of the jet and less restoring pressure can develop than with
an unchanged jet. The correction term in the numerator expresses the change
in the direct contribution of the jet to the 1lift.

2.4 .2, Damping in heave. If the machine is moving downward with a

=

velocity, G » air must leave the base area and if the machine is moving
with an upward velocity, air must flow into the base area. Damping forces
arise because of changes in the over-all 1lift at any height which occur in
either an underfed or an overfed regime. The mass flow leaving or entering

the base area is determined by

S (24)

mL= pSh

where YN is now the mass flow.
For simplicity only the leveled condition is considered. Here the jet

is uniform along the whole periphery.

2.4.2.1. Downward velocity. While losing altitude with a velocity

[+]
h <o , the escaping air forms an additional jet with momentum JFu 2

over a unit length of the periphery, resulting in an underfed regime.
Because of the leveled condition, ﬁ= Be . Indicating the changes

from the balanced condition we obtain from Equation 9

;—(§9b+ APsu) b= Ny [(ib-rA—fu)(H- prn fo) + _fu..-z.] (25)




We get the pressure difference due to the escaping air if we subtract

Equation 8 from Equation 25.

ﬁ EDB\..T's g A—-}u_ ( \ + MBo) + -j-ua_ ey

fith ,Z;E%BU- ( |+ pun ﬂo> *'?iuuz
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The predominant term on the right hand side, ju:z , indicates a
pressure increase. Aju. arises because the mass flow at the nozzle
is a function of the base pressure. An increase in base pressure causes

a decrease in mass flow, therefore AJw is a negative number. Solving

Equation 26 for A Pgu. we obtain,

A Pgyu = 25 Jua (27)

- 29y 43b . h
\ q m(ww\ﬁ)

2Ny T_&z
Cw n

where Cy, is the same as defined in Equation 22,
Differentiating the specific 1lift, Equation 16, and using the base
pressure change expressed by Equation 27, we obtain the following ex-

pressicn for the normalized damping force,

25




AR = (Anr Q- = Co'ﬂ-ﬁo'*'r\\_) A—TDB (28)

Ch

Ceo

where C-—h

has been defined in Equation 22.
The additional momentum, 37;._7_ » can be determined from the

mass flow, Bquation 24, and Bernouilli's equation
juzg——i- m h h«o (29)

In normalized form

Tue = l ; L[5 h (30)
Juz= -7 sxm 2R h= - g Vfh 4
where Ay = \'QFPI' is the Jet velocity out of ground effect.

Substituting into Equation 28

_ : (31)
AP, ¥ - 2Ning Ce b

2.k.2.2. Upward velocity. While gaining altitude with a velocity

h> o air is being supplied by the Jet into the base area, resulting
in an overfed regime. For the leveled machine, [\))= Bo . Indicating the

changes from the balanced condition, Equation 10 can be rewritten as follows:
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& (Eeb‘" A_(;ao>xw = Ny [(ib + A—-Jo> pon o+ Jor - -.—\'o,_] (32)

We get the pressure difference due to the flow into the base area if we

subtract Equation 8 from Equation 32:

(33)

+ APoh = N7 L 4T0 mn o ~(Tor=Te1) - Tea ]

We can arrive at a simple approximation to the right hand side as follows:

Joi = Mo oo Where Noo = ,I?Per (34)

Ioz = M No2 where Nron = \]W

where
Jour= (mo+ Amo=m) nrop AMoloo= Ao, ¥ AT,

If we normalize by Jeo= Moo AVoo  where Moo is the mass flow at the

nozzle out of ground effect we get

Joi—= Jou = nr?ao- A;::':" ﬁ:'—A-—XO

and




Using again A3'= aLTb APB

AP , we find by substituting into Equation 33
8

———

— (35)
APBo’z-ghn.E ™ (l + \I!——PB >

where Q4 1is the term as defined in Equation 27, and using the mass

flow Equation 24

' °

A—Peo = - 2an (! + J Pe) e hyo $99

C\-.

The change in the specific 1lift describes the normalized damping

N \F . =\h (37
AP, = Con APeo=—alflr Se L (+)-%)g,

For determining a damping factor for comparison with experimental data we

consider the average damping force acting over a complete cycle of oscillation.

LIaR,0 + 15R]= Delsce (v Ra (7)1 O

We make an error of less than 4% for 0.1 < F3<€0.9 , i.e., for all

practical values of PB , if we write
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aL [‘A-_Pt-dm\"‘ \A_P\_H,\]= X.33 e Ny

Cyv \i\_‘ (39)
Noo

\
o\ Ca

This is an expression for the normalized average damping. We obtain the

actual damping in terms of pressure if we multiply both sides by P-‘-

P [1aPanl + 14R o) | = (ko)

= Wos Vs co {p & U;)\

Qo ChH T’

2.4.3. Prequency and damping ratio of the heaving motion. The transformed

differential equation describing the heaving motion with the coupling term

neglected can be written as (See Equation 3):

2 . %X 4P . g 4aR VT _ (41)
(S v P d-\:'\s L d.h)h—o

Using Equations 19 and 22, the undamped natural fregquency is,

\[E lnL Foe Co (42)
h p\_ Qh

Wiy

- Ja_/i Jn_eu'
h

Co
[




We can determine the relative damping ratio, Ly , from & = X =18

f. O%
Expressing %?i as the coefficient in Equation 40 I
n
0.%25 2 ot C | (43)
e Jmm atp J 0 !
H o P Cn J Fae h

The influence of scaling is an increase of the damping ratio with the
square root of the linear dimension. The volume of air which moves into
or out of the base area increases proportionally with the base area, whereas
the "nozzle" area through whiéh this air moves increases proportionally with
the length of the periphery.

The damping ratio also varies inversely with the square root of the
specific load, PL, . The total pressure, F%- , must increase with PL
and the base pressure, Fﬂa , is proportional to F%- . Therefore the
variation of the velocity of the air moving into or out of the base area
is reflected in the ‘/Q?E factor.

2.5. Pitching motion.

2.5.1. Moments. The physical basis for the derivation of an expression
for the moments acting on a ground effect machine as given below, is the same
as the one adopted by Lin (Reference 18) and Webster (Reference 17). The
following derivation is different, however, in the respect that a more general
result is obtained so that the effects of different mechanisms and various
assumptions can be discussed.

Consider that the machine is in equilibrium at some small attitude angle.
The experimentally observed flow picture is similar to the one shown in the

following Figure.
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The cross flow is observed experimentally and can be explained by con-
sidering the balance éf pressure and momentum forces. When the machine
is tilted to the right, for instance, the force due to the base pressure
has a component parallel to the ground. The machine must thus exert an
equal and opposite force on the fluid mass under the base. 1In order for
this fluid mass to remain in equilibrium, the pressure force must be
balanced by a momentum change plus the frictional force at the ground.
Since the skin friction force is quite small, the pressure must be bal-
anced mainly by a momentum change which can only be brought about by part
of the air from the low jet flowing toward the high jet.

The losses due to viscous effects including the pressure drops caused
by the vortices are lumped into the 1lift efficiency factor,nL . Diff-
erential pressure changes caused by the difference between the vortices at

the two ends are considered. The result of the derivation will show that

these assumptions are sufficient to explain the nature of the moment derivative.
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The basic relationships will be derived for a two dimensional flow
and the results will be later modified for application to a three

dimensional machine.

r
Foe
he.
g 77 ‘!ff 7

Let us take a section of the vehicle of unit width and denote the
distance between the two jet sections by & . If the base is inclined
with respect to the ground at an angle,© , as illustrated in the above
Figure, there is an underfed regime at the high end and an overfed regime
at the low end. The mass flows into and out of the base area must be equal.
Our unknowns are APg = PaL- Pac - A CPau= Pau- e,
and the mass flow,Mm . We have kwo momentum balance equations for the two
ends; the third equation is provided by writing the horizontal momentum
balance equation for the total base area. ILinear pressure distribution
along the base will be assumed.

For the high end we can write, using Equation 5, and the notations of
the above Figure.

N = — Lk
&pBH b= Ny X__IH (H'/AAM/SH>+'IH?_] )

32




—J\T ([5.99_+A Pen )( he ...F\e)a nT{(‘fb-q- AT.!:H> E\'\'M(BO—Q)—I (45)

+3na+ b + AJ’Hn}
We now make small angle approximations for © and neglect the second

order terms

Pac he+ PeeFO =+ he 8Py + 7T © APgH = $150

=205 (B v A1+ pmp) = (Fot £T0)6 o po + Tz |

Subtracting the equilibrium equation for the leveled, balanced condition,

.‘5‘82_\-;2 = 2ZMg fb (\-\—/hm (30) and substituting ;'—S'H = j’% A-—PBH
L3

we get
(he + 76) 2Paia= (1)

5 - | a3 - B
=—Peere+2Y\T Y d.?bg (\fPMﬁo}APBH —jbewﬁo—rf\'\.‘;x
—_ _ 4dTe
= T+ & —=" coa 3o
where 'Y\J‘ d.ﬁg
Rearranging and using C as defined in Equation 22 the differential

momentum balance for the high end can be expressed as

@nhe + P10) A Pgu = (18)
= —PeFO-aMN; IO coafot 2Ny M (Bua~ X512)
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where ™ is the normalized cross flow and K O is the normalized

velocity of the cross flow at the high end.

The left hand side of this equation expresses the pressure changes.
The three terms on the right hand side indicate clearly the three major
factors contributing to the pressure change. The first term is due to the
increase of the nozzle-to-ground distance, the jet momentum can balance
only a smaller pressure over a larger area. The second term is due to
the change in Jjet incidence angle at the nozzle with respect to the ground,
decreasing the horizontal component of the jet. The first two terms are
of stabilizing nature, the third term which is due to the cross flow is a
destabilizing term.

For the low end we can write, using Equation 10, and the notation of

the Figure on page 32

or

(Re+4Pa)( he-FO)= (49)

= Yy X_(Tb*' A—]—L.> o (Bor©) T T2 ]

We perform a sequence of steps similar to the manipulation of the equation

for the high end, combined with the steps taken previously to expresé the

conditions for the overfed regime.
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(he- v 0)AaPo = (50)
= Pe¥O+2Nns %‘—%‘; (\+ o) A Pg_ + j'bemﬁo-ﬁ~i-x.zj

The final form is similar to Equation 37.
(the—F’ e) APgL = (51)

= .P—ae?‘e-ﬁ- aﬂ;—ﬁ‘be ceafBo— 2 Ny M (\—rE._2>

The physical meaning of the terms has been described following
Equation 48.

The third equation expresses the horizontal momentum balance over
the whole base area. All losses in the base area including the pressure
drops due to vortices are averaged and included in the lift efficiency
factor Y . Assuming a linear pressure distribution under the base and
neglecting the friction forces due to the cross flow, we can write for
small ©

s [ﬁg.z + 4 (APen+ APs)| 2F O = %)

= nTETH pon B = T pon B+ Im"'juz-j\_l—l
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and making similar steps as before

= N+ [(:—Yb"" ATw) (pmBe - © coa ﬁ)—(fb-\-,&’x‘,)(Mpo+ ©cmp,)

+ Ty + Tua— Et_i]

=N; l-aJee cee Bo %L%a (aPs - 4Pg) pan Bo

== d_‘_j_j e Cuc,@o (APBH-PL\PB;_) -+ _j'—s + Z\—B'H

d Pe
+ Trz— T ]
Substituting To-Tui= ®-aTL ; Tha= M Sus ;
and R 3_’—%; (H—/L\m@c>5= he (!—Qh)

We arrive at the following final form of our third equation

Ln.Fe - (-eghelaPon + [n.Fre + (1 ~cwhelaPor (59

= —aHL5&F9—4Y]3—Tbemﬁo+ any m ( \+r\_5‘Hz)
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Since the moment will be proportional to A Pgy — A—bet_
it is advantageous for the calculation to choose this as one of the
variables. Multiplying Equations 48 and 51 by Yl  and writing their

difference and their sum we arrive at the following set of equations.

Ner'e (A—PBH + A—-pa\_)— q —Ch>V)Q (APgnu- A_Pe\_>

—2Y\T(I+FYH2_)\'—T_\ = -3 (ﬂx_ 559_?' + ang Tb CLi@o‘)e

MeCnie (4Psus AEB“) + NLY'6 (APen— APsL)
(54)
+an:n\_r‘n‘(\ -t-(\-)'\.z—ﬁ'....-,_-*o({\yl_z) = O

N, 7' © (APgr+ APer)+ N he (APsu—APe)

—a Ny Ny M ( |+ N2+ Suz - O(EL:z):

=_a(ﬂ|_53eF\ -+ an\-hﬂ' ;ib WEO)@

37

kL]




The solution for A_BBH— A-—PB‘_ can be expressed in the following

form:

- — Qi+ C, o2 (55)
AP&J-APQL - C3+ C4Q +Csez

-

We wish to determine the moment derivative %.—% at O=0.
This restriction is Jjustified because experiments indicate that Et%g

is fairly constant in the vicinity of zero degree. Therefore we need to

determine only

d— - —

- g[(n.. PeeV + 2Ny T cra fo) g (\—o()—(\—hg)seo?‘(\+'\mz)]
T\e_Y_ I+ N2 + (1= Cn) N2 (t=—x)]

The moment acting on a segment of unit width is easily derived as follows

AP
ps + APBH
Fa
Pe +Apsx.
|
— >< - > a
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Assuming linear pressure distribution,

A Ps e e

dAM= APg n dx

Integrating this gives¥%,

(57)
| o
M- aLAPB ¥ dx = L (aPe-nPa)r?

We normalize by QL. = 4P_r?2 where L is the 1ift acting on the
segment and the area is S= ar . The moment coefficlent of our two

dimensional segment is

M - —
Qr=31r= B7 (APen-af )= 25 (&Pan-4Ps.) (58)

The moment derivative at ©=o© is

dCm_ L A (AP —APa) =
a6 120 49( e ) (59)
L (nPe+angdp + opt B ) Ve (1=a) = (1-10) Pee (V= wz)
CP. e b=+ S+ (1—Cn) e (V=)

¥There is an additional moment, the change in jet momenta multiplied
by their moment arms. It can be shown that this moment is negligible
as long as v/t »

\
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Recognizing that in PL = ad, Ny <@ <ov ﬁo + No Pac and that
at

for our segment Q= e % , we can write the moment derivative in

the following form:

d.Ch _ (60)

This result clearly inrdicates some of the influences of different
physical parameters and assumptions on the moment derivative. The two terms
in the numerator of the coefficient of P/(oTwe are of distinctly different

origins. The positive term w) could be called a cross flow variable.

v+ S Hz
The parameter ISR Y is the normalized velocity of the inward flowing Jjet
at the low end, and it can be approximated by N L2 = \— Pee since

this jet is flowing into an area where the average pressure is Pa . As
to K'J-"Hz the picture is not so clear. We know that the mass flow must

be the same as that of the inward flow at the low end and, therefore, the
change in jet momentum at the high end is determined by the change in velocity
of the outflowing jet. Because of dissipation, the cross flow will not have
the velocity N when it reaches the high side. We designate the

velocity of the cross flow when it reaches the high side by o N2

Lo




vhere ¢X  is a parameter which can have any value between zero and one.
Using Bernouilli's equation, we then find that the normalized velocity

of the cross flow outside the base area (U2 is:

Kwe = J‘_DB"' 0(1(\“ EB)

When there is complete dissipation, A= O and we obtain the

minimum estimate for K}y4a

N = Fs

If there were no dissipation (X would be equal to one and this would
correspond to expansion from the total pressure to the ambient pressure and

would give

The quantitative effect of different values of X will be shown later.

The positive "cross flow term" is destabilizing. If the other numerator
term were zero, this term alone would make the ground effect machine statically
unstable at all heights.

The second and stabilizing term could be called a "base efficiency term."
The ( V— Y]o ) factor indicates that this term would vanish if there were
no losses under the base. We have incorporated in YzL all losses resulting
in a pressure loss, including the averaged pressure drop due to the vortices.
Therefore, we can state that, in an indirect way, the vortices provide the

source of a stabilizing mechanism.

L1




We have not considered any differential effects of the vortices; but
such effects can be expected to be of secondary importance if our assumptions
lead to a good quantitative agreement with experiments. That this is the case

will be shown later.

As to the denominator the consistently negative sign of the tjp—e factor
J ®
makes the sum in the denominator always less than one. ITTLQ ( \-ol)

'+ w2

decreases as he decreases, so that their ratio is not expected to vary

by any large amount. However, at very low heights ;%- can be expected to
e
increase, +thereby causing a decrease of the denominator and an increase in the
d Jb

absolute value of the moment derivative. The physical meaning of the m
factor is that it expresses the contribution of the changes in Jjet momentum to
the moment.

It is interesting to notice that both the stabilizing and the destabilizing
terms in the moment derivative have their physical origin in the losses occurr-
ing in the base area, according to the momentum theory. If the 1lift efficiency
factor, rl;_ , were unity there would be no stabilizing moment. If the
cross flow were not dissipated at all ( &x= | ), there would be no destabilizing
moment. Consequently, if no losses occurred in the base area the moment at ©=O

as well as the moment derivative would be zero at any height.

2.5.2, Three dimensional corrections. We now have to make an estimate of

the correction to be used for the application of our moment derivative result
to three dimensional machines.

We shall normalize the moment of the three dimensional machine by dividing
the total amount by & LR, = 2 PSRz  where L. is the total 1ift, O is
the total base area and Rf;_ is the maximum half-length (half-width) of the

machine. As an approximation in the following derivation we shall neglect

L2




the Ib term in the moment derivative. This term, which represents the
direct contribution of the jet momentum to the total moment, is small at

practical heights. Using the notation of the Figure shown below and re-

ferring to the derivation of Equation 59, we can write

Ry
& t = ..__l——— j &M_ d-pl
doe lzp AR.SR, g, &0 ljp

&
| Y a (APBH - A Pen.) Pzz dn,

T GRSRr2 g 46
R, — Irl'l_z! \—A) —
¥ — ]\ T aln_ 7. e = (o) Peel 2y
LP SR '3 2 4k O (L-a) !
=3z g |+ T aB (rane) SR
_ B (1) _( _ 3
\ n. P e~ - (=N) Pee \ ARR r2 2 A%
V2 ka2 LVt 1 +Tw ) N 2 (——R?:"L) Ul&—ﬁ)

2 47t Tz (A=) a S g

6P e
- { + = m (H-AM\(:So) '+ S
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P

Comparing this result with Equation 59, the first bracket can be r%cognized
as the two dimensional moment derivative, except for the omitted 31, term,
The second bracket is the correction factor. Applying this result to the
entire moment derivative, including the ffb term, we can write

A Cm r 4Cu (62)

de I3p © ae lz2po

where
| 4RR. SR' 3 e,
r-+ =5 &) ¢x)

This correction factor is essentially the same as that obtained by Webster

4‘?1 Rz
S

(Reference 17) who made somewhat different assumptions. The factor
is the ratio of the rectangle enclosing the periphery to the base area.
The integral represents the effect of the shape of the machine on the

correction factor. For a rectangular machine = , for a circular machine =.s.

Ly




It should be considered that there is no practical need for a greater accuracy
in estimating the moments. Therefore, our approximation to the correction factor
by simply using the area ratio can be considered adequate for our purposes.

2.6. Determination of base pressure and jet momentum.

In all of the expressions given previously for frequency and damping of
the heave motion and for the pitching (or rolling) moment, it is necessary to
know the base pressure, F% » and, the jet momentum, :rB , as a function of
the height, Fl 9 and.ﬁhg phy§iéal'parameters of the machine. A number of
different expressions can be obtained for F%S and :Y3 depending on the
assumptions made about the flow pattern or the jet momentum. We will briefly
review thfee methods of obtaining these expressions which have been given in
the literature.

1. Thin jet theory (Chaplin, Reference T)

The balance between pressure forces and momentum change for a level GEM

can be expressed as,

P (W)= T (1 + pono) (63)
where Q is the length of the jet. I the Jet thickness, t , is small
compared to the height, »ﬁ , Wwe can assume the momentum, 3- , 1s constant

and equal to its value out of ground effect. Then,

J= aLt ('/2(3 V:r2)= alk P (k)

where \VE- is the velocity of the jet. Therefore,

N (65)

P, - TP?F= a(\iwﬁ):

which defines ¢




Obviously, this theory cannot be expected to yield good results near and
within the height range where it gives ?%3 > | and this range is within
four range of interest.

2. Exponential theory. (Stanton-Jones, Reference 12)

In this approach we assume that Equatiﬁnl63is satisfied for a 4iff-

erential element of the Jjet, i.e.,
haP =T (t+anB) (66)

where

T= vaQ dt

and is the Jet velocity at the element under consideration.

From Bernouilli's eguation,
\ 2 6
—a f)‘/ = FQT' - P (67)
o
Combining these equations and integrating across the Jjet gives,

Pa= \— @ ¥ (68)

Substituting the Taylor series for the exponential, we note that this

approaches the value given by Equation 65 for small AL.

—_ 2 3
P C.ML_(a;c!)+ @3&\) -
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3. Uniform jet theory. (Fuller, Reference 9; and Rethorst, Reference 11)

If we assume that the jet near the machine has approximately constant
thickness, then the balance of pressure and centrifugal force in the Jet

gives

%._E — 2 v (69)
(N r

Using Bernculli's equation and integrating gives,

_ 2 (70)
r2

where (o is the radius of curvature of the outside of the jet and @
that of the inside. Expressing these in terms of height, h , Jjet thick-

ness, t , and jet inclination angle (3 o and defining

b= 2o =:_\n_:_‘_
%%‘+'fim(3o »\ﬁ'flunfao

gives,

Pa= | — ®? (71)

In the thin jet theory it was assumed that the Jjet momentum, Tb y Was
constant. In the last two theories we can easily obtain the following

expression for Y, (i.e., F divided by T\ out of ground effect)

Tb= -a—t-AL (v- Q‘lm) (12)
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for the exponential theory and
Ib = ¢ (73)

for the uniform jet theory.

These three theories are compared graphically in Figure 1. It will be
noticed that the last two theories agree quite well, and that the thin jet
theory differs appreciably only for small height, T\ . The last two theories
also follow very closely the exact, inviscid, incompressible solution given by
Strand (Reference 28).

The exponential theory is believed to be superior to the other two

approximate approaches at very low heights. The uniform jet theory leads

to zero jet strengths at 1—3: | . The derivatives of the normalized momentum
with respect to the normalized pressure, %_—.j‘;—g , -which appears in the de-
nominators of some of the stability parameters we have investigated can be

found to be — ﬁ with this theory. These expressions then tend to infinity

as h tends to one.

In the sample calculations which will be given later and compared with

experimental results, we shall use the exponential theory. The term, 3.%_8
e
is easily shown to be,
= 2%
dTe _ -2 2 (74)
4Py A %2 v
For very small & (C\ » )
a T o L I N3 (75)
& Ps 3 3
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3. DISCUSSION OF THE THEORETICAL AND EXPERIMENTAL RESULTS

In the preceding section theoretical expressions were obtained for
several of the important stability derivatives for the hovering GEM.

The variation of these derivatives with changes in the important physical
parameters are shown by means of a number of plots given at the end of
the report. These results are discussed in the following section along
with results obtained from a series of experiments with an eight foot
diameter GEM model. The experimental set up and the procedure used for
obtaining the data is discussed in detail in Appendix B.

It was shown previously that, for a vehicle initially trimmed paral-
el to the ground, the heave and pitch motion can be considered uncoupled.
We thus divide the discussion into two sections: heaving motion and
pitching motion. -

3.1. Heaving motion.

We previously obtained expressions for the variation of the 1lift
force with height and rate of change of height and used these results to
find expressions for the frequency and damping ratio of the heaving
motion. Figures !. and 5 are plots of the undamped natural frequency of
the heave mot’.~ times the square root of the jet thickness (in feet)
Wh J_-\;_ (see Equation 42), as functions of jet inclination, o ;
nozzle to base area ratio, o. ; 1lift efficiency factor, TWL_ . The
general character of these curves is similar to the curve obtained by
thin Jjet theory except for low heights. In the thin Jet ﬁheory, the base
pressure becomes infinite as the normalized height ig (hereafter called
simply the height) tends to zero which results in an infinitely stiff

spring as height tends to zero. Actually the base pressure cannot exceed

k9




the total pressure, PT . We see from Figure 1 that the two thick Jjet
theories satisfy this condition. The base pressure also approaches the
total pressure in such a way that the spring stiffness falls to zero as
the height approaches zero. The spring stiffness for small height de-
pends to a considerable extent on the derivative of the normalized momentum

with respect to the normalized base pressure é_-:j:__h » which, as shown
ad Pas

in Figure 1, tends to become very large and differs considerably for
the two thick jet theories. For this reason, even the result for thick
Jet theory can not be relied wupon for very small values of the height
(e.g. T-; less than 1.5). We see from these Figures that the lift effi-
ciency flactor, n\_ , has very little effect on the value of the natural
frequency, Wy , and that this fregquency is decreased as the nozzle to
base area ratio, Q., is increased. Comparing Figure 4 with Figure 5,
shows that the heave frequency, (u,4 , is decreased for small height
and increased for large height when the Jjet inclinetion angle, {50 , 1s
changed from O to 45 degrees. The nozzle to base area ratio, Q. , cannot
v'ary over too great a range due to consideration of lift efficiency. (i.e.,
for efficiency the vehicle should operate at small values of height to dia-
meter ratio, —B— s,where D is an equivalent diameter for non-circular GEMs,
and when this ratio is small the optimum nozzle to base area ratio is small.)

The values obtained experimentally (experimental procedure described in
Appendix B) are shown in Figure 6. Also included in this Figure are the
appropriate theoretical curves ( = 3‘5 , ﬁ(,: 45° , k= " )
and the thin jet theory expression \J——%- ( % is the acceleration of

gravity).

-
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The theoretical expression for the damping ratio (43) has been plotted in
Figure 7. It has been normalized in the form ;:‘ JE%: (where FL. is the
specific 1lift or weight per unit base area and T is the jet thickness). The
nozzle width,'t , represents the effect of scaling since Z:H .%% is only
a function of the acceleration of gravity, %f, the air density, F , and non-
dimensional parameters. Thus, increasing the specific lift (i.e., PL= %g } de-
creases the damping ratio, §14 , but has no effect if the size of the machine
is increased proportionally. We note from this Figure that the effect of the
jet to base area ratio, a , 1is considerably greater than that of, BO , and,
YZ; . This dependence on (. is physically reasonable. The experimental values
obtained on the eight foot model are shown for different values of specific 1lift,

P

fairly good. The magnitude is appreciably correct and there is no noticeable

o

_ , in Figures O, 9 and 10. The comparison with the theoretical curves is
dependence on height, \1 . Figure 11 shows how the damping ratio, S:+¢ , varies,
for constant RPM, with specific 1ift, FDL. , as a parameter along the curve.

Finally, in Figure 12 we have plotted a number of calculated and experi-
mental values of the roots of the heave stability equation. The variation with
the height, i% , is shown for several values of specific 1ift, Fﬂ_ 3

3.2. Pitching motion.

In an earlier section of this report momentum considerations were utilized
to obtain an estimate of the moments acting on a GEM. In particular, an ex-
pression was obtained for the slope of the moment versus attitude curve for a
machine trimmed parallel to the ground. Referring to this expression (Equation 60),
we note that the two terms in the numerator depend on Q’*X> and(\*fh) respectively,
so that if both the cross flow dissipation factor, X , and the 1lift efficiency
factor, VQL , are cqual to one, the moment derivative is identically zero. The
behavior of the moment curve slope as a function of these parameters will be com-

pared with the experimental results obtained on the eight foot model.
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Recall that Equation 60 for the moment coefficient derivative, c%{@f 9

shows that when Of = | (i.e., no dissipation of cross flow) this derivative
is always negative. Thus, the momentum theory predicts that in the absence
of Jjet dissipation, the GEM would be stable at all altitudes. We also see
from the same expression that if the 1lift efficiency factor, YlL_ , were
equal to one (i.e., if the 1lift were actually as predicted by the momentum
theory) then the GEM would be unstable at all altitudes. Experience has
shown that typical values of the 1lift efficiency factor, Y)L_ , are in the
range 0.7 to 0.8. (Reference 27, for example, suggests a value 0.8 for well
designed machines.) Since all machines tested to date are stable at a very
low altitude and become unstable as the altitude is increased, the cross flow
dissipation factor, 10, , must be less than one for the moment slope to give

results which correspond with experiment. Figures 13 and 14 show how curves

X

of the moment coefficient derivative, C%g%_ versus height are affected by
changes in the cross flow dissipation factor, (X . Larger values of (X are
not included since they result in unreasonably high stability crossover points
(i.e., values of height, 4L , where the vehicle becomes neutrally stable). We
see that the curves differ considerably even for small changes in X . In-
creasing X , decreases the maximum of the moment coefficient derivative and
increases the crossover point. Figure 14 which is plotted for a larger value
of the 1lift efficiency factor, rlt- , shows the same general behavior with
respect to the cross flow dissipation factor, (X , although the crossover
point does not increase as rapidly. Figure 17 in which the jet inclination
angle, BC> , 1is zero, also shows the same behavior as a function of the

cross flow dissipation factor.
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y The behavior of the curves for different values of the lift efficiency
factor, Ne , is shown in Figures 18 and 19. These two sets of curves
are drawn only for the cross flow dissipation factor &X'= O . The general
character of the curves, however, is the same for all values of this factor,

i - o ad. Cm

We note that the behavior of the moment coefficient derivative, Y-
with varying height is quite different for the different values of the
lift efficiency factor, rlL . As was pointed out previously, 1L repre-

sents the fact that the actual 1ift produced by the base pressure falls short

of that computed on the basis of a uniform base pressure. There are probably
a number of phenomena not included in our simplified approach which could
account for this decrease in lift. Probably the most significant of these
- is the vortices. Smoke studies of the flow under the base show that there
are vortices near the Jjets under the base which reduce the pressure on the
base below the pressure which acts near the center of the base.
| When the 1lift efficiency factor, n; ,=l the GEM is unstable for all
1 values of height, x; . For smaller values of the 1lift efficiency factor,

N , the machine becomes stable for some heights, but the cross over

height and the maximum unstable value of the moment coefficient derivative,

aCh
)

factor, YQL . On comparing Figures 18 and 19 we see that, for a particu-

varies considerably for different values of the 1lift efficiency

lar value of the left efficiency factor, the machine becomes stable only
at a much lower height, h , when the jet inclination angle, (SO,equals
zero and that the maximum unstable moment slope for this case is also con-

siderably greater.
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for fixed values of 1lift efficiency Y]L, and jet to base area ratio, U,

Figure 16 shows how the moment coefficient derivative varies

as the jet inclination angle, ﬁ30 , varies from zero degrees to 60 degrees.
We see that the GEM becomes increasingly stable as this angle increases.
From Figure 15 we see that the jet to base area ratio, Q. , also has some
influence on the value of the moment coefficient deri&ative _ d§§%§1 .

This influence, however, is much less than the influence of other parameters.

We now consider the experimental results. Static moments were measured
for different values of pitch (or roll) angle, © , at a number of height
and power settings throughout the range available in the experimental set up.
Some typical curves obtained in this manner are shown in Figure 21, For the
lower heights the moment curve is very nearly a straight line and has a.
stable slope. As the height is increased, the moments reach a maximum at
some angle and then drop off. The angle at which this maximum occurs be-
comes larger as the height is increased. The moment curves were, however:
nearly linear near zero angle for all heights.

It will be noticed that in most of the curves zero moment does not
occur exactly at zero angle. This can be assumed to be due to slight
asymmetries in the flow field of the model, The slopes of the moment
curves at zero incidence are plotted as a function of height, T; , in
Figure 20 along with the appropriate theoretical curves. A number of
curves were computed to determine which combination of the cross flow
dissipation factor, (X , and the lift efficiency factor, rl;, would
give the best match to the experimental data. It was found that the

closest matches were obtained for Ylu Tbetween 0.7 and 0.8 and for X

between O and 0.2. All of the theoretical curves have a maximum for
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a height, ‘1 , of the order of 10, whereas the experimental points seem to
be increasing with height even at 1; equal to 11. We should note here,
however, that one of the conditions for the theory to be valid is that the
height to diameter ratio, j%;— , not be too large, since for sufficiently
large .%%. the Jjets on the right and left of the two dimensional model
may come together. In this case, the moment behavior may be quite dif-
ferent from that shown by the present theory.

For small values of the height,-$; ;, the theoretical curves drop off
much more rapidly than the experimental curve. This is probably due to the
fact that one of the assumpticns of the analysis becomes weak when the
height becomes sufficiently small. This is the assumption that the total
pressure in the chamber, FZr , could be considered constant. Also, the

derivative of the normalized jet momentum with respect to the normalized

base pressure, é;jig , as shown in Figure 1, becomes very large at very
& Pe
small height, x; , which is probably unrealistic. These results seem to
indicate that the theory is satisfactory for estimating the magnitude of
the slope of the moment curve, as well as its behavior with height changes
and changes in the various physical parameters of the vehicle. Accurate
values of the moment slope can not he determined, however, due to the sensi-
tivity of the results to the 1lift efficiency, 11\~ , and the dissipation
factor X . Although these parameters can be estimated, they can not be
easily determined accurately. Also, to improve the accuracy of the results

for small height, \L , it would probably be necessary to refine the theory

and include the effects of changes in total pressure and vortices.

55




Using the present theoretical approach it was not possible to find a
satisfactory explanation for damping in the pitching motion. Experiments
seenmed to indicate, however, that there was a considerable amount of damp-
ing in this mode of motion. Results of these experiments are shown in
Figure 22, These curves indicate that the damping decreases quite rapidly
as height, ‘; » 1s increased. The damping-itself, however was relatively
high in all of the tests.

These results indicate that, for all but the very lowest heights
tested, the characteristic roots of the pitching mode are both real, one
lying to the left of the imaginary axis and one to the right. If there had
been no damping in the system the two roots would have been placed symmetri-
cally with respect to the imaginary axis. The damping moves both roots to
the left. 1In Figure 23 we see how these roots rove along the real axis as
the altitude is varied. The abscissa of the curve shown represents the
position of the two roots along the real axis for a given height. As the
height, W; , decreases, the divergent root moves toward the origin, pass-
ing through the value zero at-gw = 3.3, while the convergent root at first
moves away and then starts back toward the origin at about the same height,
]% at which the divergent root passes through the value zero. The two
roots come together at a position -7.3 on the real axis for T; equal to 1.k.

For heights lower than this the roots would represent a damped oscillation.

This last point is the result of extrapolatiocon.
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L. FORWARD FLIGHT CONSIDERATIONS

In considering the hovering GEM we were able to present a theory which
predicted the most important dynamic characteristics of the machine's behavior.
We were also able to present experimental results with which to check these
predictions. For the GEM in forward flight the situation is considerably more
difficult. No adequate theory is available and the small amount of experi-
mental results available are for fairly high free stream velocities (greater
than 30 feet per second). For this reason, the discussion given here will be
confined to summarizing what is known about the forward flight regime and to
making a few observations as to how this might effect the dynamic character-
istics of the GEM in low speed flight.

The character of the flow around the GEM changes considerably as the free
stream velocity is increased. Depending on the dynamic pressure, the flow

field will be similar to one of forms illustrated as A and B below.

O/ N _<>”/ N l7Zr =

A Low Velocity B High Velocity

If the freestream velocity is zero there is no cross flow when the GEM ie parallel
to the ground. When the free stream velocity is not zero, the static pressure in
front of the Jjet will be increased. The difference between the base pressure and
the ambient pressure becomes less so that, if the height remains constant, the
forward jet need not be as strong. Thus, part of the jet will pass under the

GEM as shown in A above. As the dynamic pressure increases, the strength of the
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cross flow will increase until finally all of the jet passes under the base as
shown in B above. The velocity at which the flow pattern A changes to pattern
B will be approximately determined by equating the free stream dynamic pressure

to the base pressure,

Iie

: 2 = L 76
TPV PB" P\_ S ( )

for small h . This will be only a very rough estimate since the vortex
ahead of the jet (shown in A) will influence the pressure there. We neglect
this effect. Observe that the velocity at which the flow change occurs will
increase with increasing specific load. Smoke studies described in Reference 29
seem to indicate that the Jjet turns back under the base at a dynamic pressure
somewhat lower thor. the one corresponding to the base pressure. If, however,
the specific load, (a_ , is very low, flow pattern B might be reached before
the dynamic pressure i1s high enough to make control surfaces effective. We
shall consider here only forwaﬁd flight at low speeds where control surfaces
are not effective. The speed at which the control surface becomes useable
would depend on the particular design under consideration.

In hovering we could, with sufficient accuracy, consider the motion to
have only two degrees of freedom (i.e., forces introduced by horizontal motion
about the zero velocity condition could be neglected), we now have three de-
grees of freedom. For low speed flight of a level GEM, however, the heave
degree of freedom is nearly uncoupled from the pitch and forward velocity de-
grees of freedom. There is a small coupling because there is some 1lift change
with either a change in forward velocity or a change in attitude. The former
1lift change should be small if the forward velocity is sufficiently small, and

the latter 1ift change should be zero (or nearly so) if the aircraft is initially
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trimmed in a level attitude. Thus, in order to keep the analysis simple, we

neglect the heave degree of freedom in forward flight and consider only the

attitude and translational degrees of freedom. This does not imply that the

variation of vertical force with changes in the steady state velocity will be

small. However, such variation should introduce no severe dynamic problems.
The perturbation equations describing the GEM in forward flight will

thus be,

16+ 26+ 2o+ Py~ Mg

Y2 06 DV > (17)
oX Vo4 QX = oX
bee+mV+bv\/ StSt

The rate term, Eﬁ; © , vwhich arises in conventional aircraft primarily

because of a change in the angle of attack of the horizontal tail, can be

neglected at low velocities. We then need to estimate %2; , the pitching
moment change with forward velocity; é%%% , the horizontal force change with
Eii , the horizontal force change with velocity; oM » the
oV fal=]

moment due to attitude change; and .%%g— , the damping moment. We would like

pitch angle;

to know how these derivatives change with changes in the height,.x; , and the
forward velocity, V .
The forces acting on the GEM in the horizontal direction are:
a. the thrust from auxiliary propulsion
b. the component of 1ift vector in horizontal direction
c., the momentum drag
d., the parasite drag (skin friction and form drag)

e. the interference thrust (momentum recovery).
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Additional drag will be encountered in flight over water; however, this
effect will not be considered here. For a more complete discussion of drag
forces acting on GEMs, see Reference 21 (Andu and Miyashita).

Thus, (with the X-axis parallel to the ground) the horizontal force can

be expressed:
A= Tose®- Lpne-uv- ;L,D\/ZCDP*' Tz (78)

where |

propulsion thrust
L = 1irt

mass flow

X

QDP
Tinx

We shall assume that the thrust is constant and that

parasite drag coefficient

interference thrust

© - 0 in equilibrium; thus tam © X ©
L= W (machine weight)
Cpp is approximately independent of both V and &

Thus we obtain,

O Vit
g)\(’ = -—/U—'P\/QDP‘\' ™V
OX _ _ O Vit (79)
56 W+ >6

Little is known about the interference thrust Vit . The following
experimental curves from Reference 26 (Sweeney and Nixon), however, show that

it is strongly dependent on velocity.
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Andu and Miyashita (Reference 21) have suggested the following mechanisms
for this term,

a. the disappearance of dead air at the air intake and nozzle exit
(which was present in power-off parasite drag experiments), and the re-
duction of friction drag on the base, reduce the parasite drag in a power-
on condition;

b. the ingested and ejected air bring about a favorable effect on the
external flow;

c. the ejected air has energy in the form of total pressure, some part
of which is converted to propulsive work in the process of expansion.

Because of the present lack of understanding, the derivatives of this term
will have to be estimated from experimental data. From the curve shown above,
it appears that the interference thrust decreases with increasing velocity. No

data is, however, available to estimate its behavior with pitch angle.




There will be moments acting on the machine for the following reasons:

a. change in the base pressure distribution

b. change in pressure distribution over the exterior of the machine

c. change in Jjet strength at the front and back of the machine,
As soon as the GEM starts to move forward, the pressure distribution over the
upper surface and around the exterior of the Jjet will change. One would at
first think that the increased pressure at the front of the machine would
cause the base pressure Jjust inside of the front Jet to increase and hence
give a positive nose~up pitching moment. Experiments, however, have shown
that, for low velocities (corresponding to condition A above), this is not
the case (see Reference 19). This effect would appear to be attributable to
the presence of the large vortex at the front of the machine. Measurements
of the base pressure distribution given in Reference 19 show that the pressure
is lowest at the front of the machine and increases monotonically (although not
always linearly) to the rear of the machine. This results in a negative pitch-
ing moment. Because of the presence of the forward vortex and the fact that
air is being drawn into the top of the machine, it would be very difficult to
make any general statements about the pressure distribution over the upper sur-
face of the machine. It will certainly be considerably different from the
pressure distribution of an unpowered machine and it will probably depend
strongly upon the particular exterior shape of the GEM.

Moments arising directly from the change in jet strength will be small as
long as the Jjet area is small compared to the base area. If we neglect this

contribution of the Jjets we can then express the moment as follows:

M= Mer + S 02 AP (80)
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where

b“‘exT = moment due to the pressure changes on the upper surface of the machine

AP

difference between the base pressure at the front and the back of
the machine

= equivalent radius of the machine

A s

a factor which accounts for the three dimensional character of the
machine, as well as for differences between the actual and a
linear pressure distribution.
We are mainly interested in estimating the moment change with change of atti-
% oM ; ity OM
ude angle, 26 and the moment change due to change in forward velocity N

We can express these as follows:

M _ OMex . K 2 QAP
lo]= oY= 3 00
(81)
%M_ - Mea i p2 24P
Vv oV 3 oV
o e o .
e damping in pitch, ?SE; , will probably not be much effected by the

small forward velocities and will be considered to be approximately the same
as for a hovering GEM.

Because of the complexity of the flow under the base and across the surface
of the GEM, the two derivatives %l/‘e— and %_‘3 must be determined for any specific
machine by experimental means. Using the results of some wind tunnel tests which
have been made, however, we can make some general qualitative observations con-
cerning the manner in which these two derivatives can be expected to behave.

Consider first the moment change due to velocity, %g;} . We can obtain
some feeling for the behavior of this derivative from the results of Reference 19.
The curves below show the qualitative behavior of the moment coefficient, (}rq ’

with changes in velocity for different heights. (The notation is ours and not

that of the Reference cited).
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The parameter C,u is defined to be:

= IR
QP' ‘/a,ov25

where J is Jet strength per unit length; ,Q. is the circumference; and S

is the base area of the GEM.

If we equate the dynamic pressure to the base pressure and use the above

definition of C,.L we find that,

nJ I + Aun Bo (82)
4 %o

_
Cpe

In the curves shown above, the sharp changes occur at a value of =

Cpe
approximately equal to the one given in this Equation. Thus, the region of
interest to us in these curves is only that small portion lying to the left of

the sharp slope changes (i.e., to the left of the dotted line in the Figure).
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We note from the curves that, for very small height to diameter ratio, 974),

the derivative is positive and that, for the larger values of {V& , 1t is

oM
oV
negative for small forward velocities and changes sign rapidly at some velocities.

As h/t) increases the magnitude of the slope, , becomes greater. This

oM
oV
would seem to indicate that an accelerating GEM would experience rapid changes

in dynamic characteristics if it were operating at sufficiently large value

of 27&) 0

We now consider the derivative

M
006

concerning the effect of forward velocity on this derivative in the region in

. Almost no information is available

which we are interested (i.e., '/;.,/J\/2 < P& ). This is because of the fact
that all moment information which is available comes from wind tunnel tests
whiclhi cannot be conducted with accuracy at less than about 30 feet per second.
In order to conduct experiments at lower velocities a facility such as the
Princeton University Forward Flight Facility would be required. Although some
ground effect experiments have been conducted in this Facility with a four foot
model, none have yet included pitching moment measurements.

Sweeney and Nixon (Reference 30) have stated that the Princeton 20-foot GEM
(P-GEM) becomes statically stable in forward flight, although it is quite un-
stable in hover (at full power with stabilizing slots closed). They remark,
however, that this might be associated with the fact that the P-GEM achieves
forward propulsion by tilting the nose down, and that the stability increase
could be associated ejther with the slight height loss in this attitude or to
the attitude itself. Further tests with a leveled machine will probably be re-
quired to determine whether the note of optimism in these results is justified.
However, one might conclude from these results that the effect of low forward

velocities will at least not decrease the static stability.
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5. PRELIMINARY CONTROL SYNTHESIS*

5.1. Stability augmentation

General experience with ground effect machines, as well as the theoretical
results presented in the first part of this report, indicate consistently that
a peripheral jet machine exhibits static instability in attitude well within
the height range where it's performance is still economical., Stabilization
by aerodynamic means, such as slots, has to be paid for in performance.
Artificial stability augmentation by means of automatic feedback control
suggests itself as a powerful and convenient alternative,

The development of the ideas concerning artificial stability augmentation
consists of three steps:

a. description of the uncontrolled system

b. establishing design principles for the controlled system

c. conclusions to be drawn from (a) and (b) as to the design of a

controller, as well as consideration of the limitations of its use,

In the following we shall consider first pitch stabilization in hover, and
then discuss the effect of forward velocity on this proposed stabili:ation.

5.1.1. Description of the uncontrolled system. In the initial approach we

are going to consider only the attitude degree of freedom (pitch or roll). 1In
the previous discussion of the equations of motion, the attitude degree of
freedom has been singled out as causing the most significant stability problems.
Tests and theory have shown that the aerodynamic "spring" of this second order
system varies from positive (stabilizing) to negative (destabilizing) values.
With increased hovering height the negative "spring constant" reaches a rather
flat maximum absolute value. The practically useful performance range of the

GEM reaches into the region of this maximum,

*Methods used below are discussed in servomechanism texts (e.g. Reference 31)
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The transfer function for one degree of freedom in attitude can be written

in the following form:

G. - 2. _Adx (83)
©" Je

(S=5)(s~-52)
where
Si = we (-3« \JH' 2)
S2 = wep (- %~ JH-B'Z)
Wi = oM/ e
I
With no damping, $= © , S,= - Sy = Wp . The effect of the

damping on the location of the roots of a second order system with a negative
s;;ring is shown in Figure 25. Our test results (see Figures 22 and 23) have
shown the existence of fairly high damping throughout the useful height range,
although no theoretical explanation for this phenomenon could be found.

It seems reasonable to assume that the general behavior of the roots
( S‘ and S, ) would be similar to the behavior indicated in Figure 23, and
that this would be independent of the size of the machine.

The effect of scaling on the "undamped natural frequency", (Op , is the

following:
L aCM)
2_ oM /28 Q.LP(\"/'C)(F Y2) (8k4)
(.oP = —F = 2
I M rq
. : . I OCm . . -
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